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FINAL REPORT (ITEM 0005) 
 

Ab-initio Calculations of Structure and 
Properties of Nanolaminated MAX Phases  
 
Jochen M. Schneider, Materials Chemistry, RWTH Aachen University, 
Kopernikusstr. 16, D-52074 Aachen, Germany 
 
Our aim is to contribute towards the development of novel tribological materials. We 
study the relationship between the valence electron configuration of M in M2AlC and 
the shear modulus of this fascinating new class of nanolaminated materials. 
Our specific research directions are: 
 
Goal 1: To find the minimum shear modulus in M2AlC with M = Y, Zr, Nb, 

Mo. This has been carried out within Part A. 
 
Goal 2:  To find the minimum shear modulus in M2AlC with M = La, Hf, Ta, 

W. This has been carried out within Part B. 
 

Figure 1 shows a comparison between the C44 values of M2AlC (M = Y, La, 
Zr, Hf, Nb, Ta, Mo, W) and the C44 data of the corresponding MC. It is interesting to 
note that the C44 values of M2AlC are close to those for MC, except for M2AlC phases 
containing groups VB and VIB transition metals. Hence, M2AlC may be classified 
into two groups according to valence electron concentration of the transition metal M. 
One group comprises groups VB and VIB transition metals, where the C44 values are 
constant at about 170 GPa and independent of the corresponding MC. The other group 
includes transition metals of groups IIIB and IVB, where the C44 is a linear function 
of the corresponding MC. The valence electron concentration induced changes in 
shear behavior observed here can be compared to previously published valence 
electron concentration induced changes in compression behavior1,2. It is evident that 
both classification proposals exhibit identical critical valence electron concentration 
values for the group boundary. Furthermore, it is worth noting that the C44 data of 
Y2AlC and La2AlC are comparable to those of Au and Ag3, which are common solid 
lubricants4. Hence, it is envisioned that these ternary carbides may benefit a number 
of applications, one of which is a low shear strength solids to operate at elevated 
temperatures without degradation by oxidation and wear. 

 
The shear stress – shear strain relationship for M2AlC with M being a 4d 

transition metal is shown in Fig. 2. It is obvious that the previously discussed two-
group behavior is conserved. Y2AlC and Zr2AlC can be described as weakly coupled 
M2AC phases, while Nb2AlC and Mo2AlC are strongly coupled. Furthermore, there is 
a peak (yield point) in the stress – strain curves of Mo2AlC and Nb2AlC at 0.30, while 
Zr2AlC and Y2AlC exhibit the corresponding peaks at 0.28 and 0.25, respectively. 
                                                 
1 Z. Sun, D. Music, R. Ahuja, S. Li, and J. M. Schneider, Phys. Rev. B 70, 092102 (2004) 
2 D. Music, Z. Sun, and J. M. Schneider, Solid State Commun. 133, 381 (2005) 
3 C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, New York, 1996) p. 91 
4 O. O. Ajayi, A. Erdemir, G. R. Fenske, R. A. Erck, J. H. Hsieh, and F. A. Nichols, Tribology Trans. 
37, 656 (1994) 
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Thus, Mo2AlC and Nb2AlC withstand larger shear strains than Zr2AlC and Y2AlC. 
This is reflected in the ideal shear strength of these compounds decreasing from 54.7 
to 7.5 GPa, by 83.3%, as Mo is replaced with Y in M2AlC. We have shown for 
Nb2AlC that it exhibits basal slip and there is no evidence of phase transformation 
under shearing1. This is consistent with all shear stress – shear strain relationships 
shown in Fig. 2. The classification proposal for shearing put forward here may be 
corroborated by these stress – strain relationships. 
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FIG. 1  Elastic constant C44 of ternary M2AlC phases (M = Y, La, Zr, Hf, Nb, 

Ta, Mo, W) as a function of C44 of the corresponding binary carbides. 
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FIG. 2  The stress-strain curves for the shear deformation in M2AlC, where M 

is Y, Zr, Nb, and Mo. 
 

                                                 
1 D. Music, Z. Sun, A. A. Voevodin, and J. M. Schneider, submitted for publication (2005) 
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 This behavior may be explained by the analysis of the electronic structure. In 
Fig. 3, electron density distributions in the ( 0211 ) plane for M2AlC, where M is Y, 
Zr, Nb, and Mo, are shown. Analyzing the M-C bonding, it can be concluded that the 
bonding is characterized by covalent and ionic contributions. There is metallic 
bonding between MC and Al layers as well as weak covalent contribution in c-
direction as a function of valence electron of M. Hence, Y2AlC and Zr2AlC may be 
characterized as weakly coupled nanolaminates, while Nb2AlC and Mo2AlC may be 
characterized as strongly coupled nanolaminates. This may be an explanation for the 
shearing behavior: weakly coupled nanolaminates give rise to low C44, while strongly 
coupled nanolaminates give rise to large C44, as discussed above. 
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FIG. 3 Electron density distributions in the ( 0211 ) plane for M2AlC, 

where M is Y, Zr, Nb, and Mo. 
 
 In summary, we have carried out systematic research on the relationship 
between the valence electron configuration of M (Y, Zr, Nb, Mo, La, Hf, Ta, W) in 
M2AlC and the shear modulus of this fascinating new class of nanolaminated 
materials. It can be learned that M2AlC phases with M from group IIIB exhibit the 
lowest shear modulus. This can be understood based on weak coupling of these 
nanolaminates in the c-direction. These findings may be important for the 
development of low friction ceramic based materials, which are capable of a broad 
temperature range operations. These materials can be then incorporated into advanced 
nanostructures for broad temperature lubrication in ambient and space environments, 
which are currently being developed for aerospace engineering. Furthermore, since 
such materials contain intrinsically nanolayered arrangements of metal/covalent-ionic 
bond interfaces, their friction response can be influenced through substitution of M 
and A elements to tune tribo-chemical activated reactions and processes. 
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